Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure: role of nitric oxide and caspases.
نویسندگان
چکیده
Acute renal failure (ARF) is a frequent and serious complication of endotoxemia caused by lipopolysaccharide (LPS) and contributes significantly to mortality. The present studies were undertaken to examine the roles of nitric oxide (NO) and caspase activation on renal peritubular blood flow and apoptosis in a murine model of LPS-induced ARF. Male C57BL/6 mice treated with LPS (Escherichia coli) at a dose of 10 mg/kg developed ARF at 18 h. Renal failure was associated with a significant decrease in peritubular capillary perfusion. Vessels with no flow increased from 7 +/- 3% in the saline group to 30 +/- 4% in the LPS group (P < 0.01). Both the inducible NO synthase inhibitor L-N(6)-1-iminoethyl-lysine (L-NIL) and the nonselective caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (Z-VAD) prevented renal failure and reversed perfusion deficits. Renal failure was also associated with an increase in renal caspase-3 activity and an increase in renal apoptosis. Both L-NIL and Z-VAD prevented these changes. LPS caused an increase in NO production that was blocked by L-NIL but not by Z-VAD. Taken together, these data suggest NO-mediated activation of renal caspases and the resulting disruption in peritubular blood flow are an important mechanism of LPS-induced ARF.
منابع مشابه
Effects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways
Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...
متن کاملThe role of nitric oxide in the protective action of remote ischemic per-conditioning against ischemia/reperfusion-induced acute renal failure in rat
Objective(s): We investigated the role of nitric oxide (NO) in the protective effects of remote ischemic per-conditioning (rIPerC) on renal ischemia/reperfusion (I/R) injury in male rats. Materials and Methods: I/R treatment consisted of 45 min bilateral renal artery ischemia and 24 hr reperfusion interval. rIPerC was performed using four cycles of 2 min occlusions of the left femoral artery an...
متن کاملNephrotoxicity of Isosorbide Dinitrate and Cholestasis in Rat: The Possible Role of Nitric Oxide
Background: Nitric oxide (NO), a major chemical form of endothelium-derived relaxing factor and an important regulator of vascular tone, is released by endothelial cells. The role of NO is not restricted to the vascular system, and it participates in the regulation of renal hemodynamics and renal excretory function. There are increasing evidences indicating that the elevated levels of NO play a...
متن کاملActivated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2.
Endothelial dysfunction contributes significantly to acute renal failure (ARF) during inflammatory diseases including septic shock. Previous studies have shown that activated protein C (APC) exhibits anti-inflammatory properties and modulates endothelial function. Therefore, we investigated the effect of APC on ARF in a rat model of endotoxemia. Rats subjected to lipopolysaccharide (LPS) treatm...
متن کاملPeritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice.
The mortality rate for septic patients with acute renal failure is extremely high. Since sepsis is often caused by lipopolysaccharide (LPS), a model of LPS challenge was used to study the development of kidney injury. Intravital video microscopy was utilized to investigate renal peritubular capillary blood flow in anesthetized male C57BL/6 mice at 0, 2, 6, 10, 18, 24, 36, and 48 h after LPS adm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 289 6 شماره
صفحات -
تاریخ انتشار 2005